STRUCTURAL AND SPECTROSCOPIC COMPARISON OF THE COMPLEXES $\mathrm{Cp}_{2} \mathrm{M}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})(\mathrm{M}=\mathrm{Ti}, \mathrm{Zr}, \mathrm{Hf}),\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})$ AND $\mathrm{Cp}_{2} \mathrm{TiCl}\left(\mathrm{PMe}_{3}\right)$; X-RAY STRUCTURES OF $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})$ AND $\mathrm{Cp}_{2} \mathbf{T i C l}\left(\mathrm{PMe}_{3}\right)$

LAWRENCE B. KOOL, MARVIN D. RAUSCH *,
Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, 01003 (U.S.A.)

HELMUT G. ALT, MAX HERBERHOLD,
Laboratorium für Anorganische Chemie der Universität Rayreuth, Universitätsstrasse 30, D-8580 Rayreuth (F.R.G.)

BRIGITTE WOLF and ULF THEWALT
Sektion für Röntgen- und Elektronenbeugung der Universität Ulm, Oberer Eselsberg, D-7900 Ulm (F.R.G.) (Received June 19th, 1985)

Summary

The photo-induced reaction of $\mathrm{Cp}_{2}^{\prime} \mathrm{M}(\mathrm{CO})_{2}$ complexes $\left(\mathrm{Cp}^{\prime}=\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{C}_{9} \mathrm{H}_{7} ; \mathrm{M}=\right.$ $\mathrm{Ti}, \mathrm{Zr}, \mathrm{Hf}$) with trimethylphosphine provides the substitution products $\mathrm{Cp}_{2}^{\prime} \mathrm{M}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})$ in high yields. $\mathrm{Cp}_{2} \mathrm{TiCl}\left(\mathrm{PMe}_{3}\right)$ is obtained by the reduction of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ with magnesium in the presence of PMe_{3}. The spectroscopic data for these complexes and the X -ray structures of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})$ and $\mathrm{Cp}_{2} \mathrm{TiCl}\left(\mathrm{PMe}_{3}\right)$ are compared.

Introduction

It is well-known that acceptor ligands like CO can stabilize titanocene, " $\mathrm{Cp}_{2} \mathrm{Ti}$ ", and $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CO})_{2}$ (1) was reported as early as 1959 [1]. This complex has been widely used as a precursor of titanocene derivatives [2]. Very recently we described the preparation of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)_{2}$ (2) [3], a much more reactive and thus more versatile source of "titanocene". Complex 2 loses both phosphine ligands under extremely mild conditions to afford a variety of disubstitution products [3,4]. In some cases, however, $\mathbf{2}$ is too reactive, causing oligomerization and polymerization of unsaturated ligands such as isonitriles and alkynes. For this reason, we have developed

[^0]routes to the mixed ligand species $\mathrm{Cp}_{2} \mathrm{M}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})(\mathrm{M}=\mathrm{Ti}$. Zr . Ilf) and some indenyl derivatives and we describe below the syntheses of these complexes and present a comparison of their spectroscopic data. The crystal and molecular structures of the mixed ligand complexes 3 and 7 are also reported, and compared with those of related derivatives. The complexes Cp Ti(PMe, (CO (3) and $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})(4)$, obtained under different conditions, have been biefly described previously [5].

(1)

$\left(3, M=T_{i} ;\right.$
4, M $=7 r$;
$5, M=H f)$

(7)

Results and discussion

1. Syntheses

Photochemical replacement of one CO ligand of 1 leads to the mixed derivative $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})$ (3) in a high yield. It has not been possible to replace the remaining CO ligand to form 2 even under photochemical conditions.

The related compounds $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})$ (4), $\mathrm{Cp}_{2} \mathrm{Hf}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})$ (5) and $\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})(6)\left(\mathrm{C}_{9} \mathrm{H}_{7}=\right.$ indenyl) were also synthesized in good yields by photochemical routes from the respective dicarbonyls. The chloro-substituted complex $\mathrm{Cp}_{2} \mathrm{TiCl}\left(\mathrm{PMe}_{3}\right)(7)$ was obtained via a partial reduction of $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}(\mathbf{8})$ in the presence of PMe_{3} and HgCl_{2}. In the absence of IgCl_{2}, reduction is much more rapid, and only 2 is obtained [3]. We also obtained 7 from $\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\right.$ and PMe_{3} in THF, utilizing the method of Green and Lucas [6].

2. Spectroscopic characterization

The relevant IR and NMR data for compounds $\mathbf{1 - 6}$ are given in Table 1 together with those for $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}(\mathbf{8})$. The IR spectra reveal a strong interaction between the two-electron ligands CO and PMe_{3}. Thus, the CO stretching frequencies of $\mathbf{3 - 6}$ are much lower than those for $\mathbf{1}$, as a result of enhanced $\mathrm{Ti} \rightarrow \mathrm{CO}$ back-bonding in the mixed ligand systems. A decrease in the CO absorption frequency in the complexes $\mathrm{Cp}_{2} \mathrm{Li}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})(3), \mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})(4)$ and $\mathrm{Cp}_{2} \mathrm{Hf}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})(5)$ indicates a strengthening of the $\mathrm{M}-\mathrm{CO}$ bond on going down the series. Analogous trends have been observed in the corresponding series of complexes $\mathrm{Cp}_{2} \mathrm{M}(\mathrm{CO})_{2}(\mathrm{M}=\mathrm{Ti}, \mathrm{Zr}$, Hf) [7].

A comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $1-3$ indicates that the electron density in the cyclopentadienyl rings is very little affected by the substitution of PMe_{3} for CO ligands, although it differs considerably from that in the complex $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ (8) which is formally titanium(IV). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for the Cp rings in $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})$ (3), $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})$ (4) and $\mathrm{Cp}_{2} \mathrm{Hf}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})(5)$ indicate there is only slight variation in ring electron density

Fig. 1. Molecular structure of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})$ (3).
TABIt:
IR"AND) NMR SPFOTRAOF 1-6

	$\begin{aligned} & \text { IR } \\ & v(\mathrm{CO}) \end{aligned}$
(PTICO) (1)	$\begin{aligned} & \left.1976 A_{1}\right) \\ & 1989, B_{1} \end{aligned}$
(parphe) , 201.4	---
	1864 (${ }^{\prime}$
CP. /rPMeracold	1853(4)
(p) HfPMC; (CO)(5)	1842(${ }^{\prime}$)
(6, H) MPMera(0)(6)	1861.A')
($\mathrm{P}_{2} \mathrm{HCl}$ (8)	

TABLE 2
$\operatorname{BOND} \operatorname{DISTANCES}(\AA)$ AND BOND ANGLES $\left({ }^{\circ}\right) \mathrm{OF} \mathrm{C}_{\mathrm{P}_{2}} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})(3)$

Atoms ${ }^{\text {a }}$	Distances	Atoms "	Angles
Ti-P	2.544(1)	$\mathrm{P}-\mathrm{Ti}-\mathrm{C}(1)$	88.2(1)
Ti-C(1)	$1.963(5)$	$\mathrm{Z}(1)-\mathrm{Ti}-\mathrm{Z}(2)$	136.9(3)
		$\mathrm{P}-\mathrm{Ti}-\mathrm{Z}(1)$	105.5(2)
$\mathrm{P}-\mathrm{C}(111)$	$1.826(8)$	$\mathrm{P}-\mathrm{Ti}-\mathrm{Z}(2)$	106.7(2)
$\mathrm{P}-\mathrm{C}(112)$	$1.824(7)$	$\mathrm{C}(1)-\mathrm{Ti}-\mathrm{Z}(1)$	104.8(2)
$\mathrm{P}-\mathrm{C}(113)$	1.826(10)	$\mathrm{C}(1)-\mathrm{Ti}-\mathrm{Z}(2)$	104.1(3)
$\mathrm{C}(1)-\mathrm{O}$	$1.185(6)$	Ti-P-C(111)	116.6(3)
		Ti-P-C(112)	116.8(3)
Ti-C(11)	2.333(5)	$\mathrm{Ti}-\mathrm{P}-\mathrm{C}(113)$	118.8(3)
$\mathrm{Ti}-\mathrm{C}(12)$	2.371(5)	$\mathrm{C}(111)-\mathrm{P}-\mathrm{C}(112)$	$99.8(4)$
Ti-C(13)	$2.379(6)$	$\mathrm{C}(112)-\mathrm{P}-\mathrm{C}(113)$	99.4(4)
Ti-C(14)	2.350 (6)	$\mathrm{C}(111)-\mathrm{P}-\mathrm{C}(113)$	102.3(4)
Ti-C(15)	$2.335(6)$	$\mathrm{Ti}-\mathrm{C}(1)-\mathrm{O}$	177.2(4)
Ti-C(21)	$2.344(6)$	$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(12)$	107.9(5)
Ti-C(22)	2.345 (5)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	108.5(5)
$\mathrm{Ti}-\mathrm{C}(23)$	$2.365(6)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	107.9(6)
$\mathrm{Ti}-\mathrm{C}(24)$	$2.378(7)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$109.7(6)$
$\mathrm{Ti}-\mathrm{C}(25)$	$2.367(7)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(11)$	$106.0(6)$
		C(25)-C(21)-C(22)	107.2(7)
Ti-Z(1)	$2.036(6)$	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	107.6(7)
$11-\angle(2)$	$2.044(6)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	108.1(6)
		$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	108.6(7)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.376(9)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(21)$	108.4(7)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.377(8)$		
$C(13)-\mathrm{C}(14)$	$1.380(9)$		
$\mathrm{C}(14)-\mathrm{C}(15)$	1.376 (11)		
$C(15)-C(11)$	$1.426(8)$		
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.418(9)$		
$\mathrm{C}(22)-\mathrm{C}(23)$	1.372(12)		
$\mathrm{C}(23)-\mathrm{C}(24)$	1.389(11)		
$C(24)-C(25)$	$1.373(11)$		
$C(25)-C(21)$	$1.380(13)$		

${ }^{"} \mathbf{Z}(1), Z(2)$ are the centroids of the C_{5} rings.
with changes in the metal. In contrast, the phosphorus nuclei in $3-5$ experience enhanced shielding proceeding down the series, as evidenced by the ${ }^{31} \mathrm{P}$ NMR shifts. A comparison of the IR data in the complexes $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})$ (3) and $\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}(\mathrm{CO})\right.$ (6) indicates that substitution of indenyl ligands for Cp ligands has a minimal effect on the electron density of the CO groups.

3. X-Ray structures

A single molecule of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})(3)$ is shown in Fig. 1; bond distances and angles are given in Table 2.

The two Cp rings are planar within the error limits, the deviations of the C atoms from the best plane being $<0.003 \AA$. The vectors normal to the ring planes include an angle of 136.9°.

A single molecule of $\mathrm{Cp}_{2} \mathrm{TiCl}\left(\mathrm{PMe}_{3}\right)$ (7) is shown in Fig. 2; bond distances and angles are given in Table 3.

Fig. 2. Molecular structure of (p TicirPMe; (7).
The two compounds 3 and 7 are isomorphous, with the (O ligand in 3 corresponding to the Cl ligand in 7 . This was indicated by the similar lattice constants for the two compounds and was confirmed by the (independent) structure determina-

TABIF:
BOND DISTANCIS (A) AND BOND ANGLES (\%OF CPTCl(PME: 7 (

Atoms	Distances	Atoms	Angler
$\mathrm{T})(1$	2.481(2)	P.Ti-C)	80.411
Ti P	2.50911	Z 11 Tj Za 21	182.33)
		P. Ti-Zil)	107.89
P (1111)	1.8376	P 1i-7, 2 ,	105.98.)
P C(112)	1.82366	($\left.\left.1-\mathrm{Ti}_{1}-21\right]\right)$	108.92)
P (113)	$1.8 .3516)$	(1)T1-2)	104201
Ti C(1)	$2.305(6)$	T P-C(111)	110.13\%
$\mathrm{Ti}-\mathrm{C}(12)$	2.40467	T1-P(112)	10998
Ti C(1.3)	2.374 ${ }^{2.39}$	IT P-C(1)3)	116.36
Ti-. (14)	$2.304(8)$	(111)-1'(112)	100.8 \%
T © C(15)	2.37277	(1112) P (1113)	ハ9.19)
$\mathrm{T} i \ldots(121)$	2.34966	(111) P-(113)	104. ${ }^{10} 3$
It-(122)	2.3577)	(115) - (11) (112)	107,96
T (Cl^{23})	2.38367	(111) (12) © (13)	10696
$\mathrm{Ti} \times(124)$	2.39917	$(112)-(13)-(14)$	110.50)
$\mathrm{Ti}-(125)$	$2.374(3)$	(113)-(1) - (115)	107.607
		(114) (15) - (11)	1108.047
Ti-7. 7 (1)	2.07117	(125) (121) - (122)	109.56)
T1-72)	$2064(7)$	(121) (22) C(2)	106. 76
		(122) - (23)- (124)	1182) 6
C(11)-C(12)	1.413(12)	(123)-(124)-(125)	109.560
C(12) (113)	1.357(11)	(124) (125) C121)	10"4me
(113) (114)	1.364(12)		
C(14) C(15)	1.383(13)		
(i15) C(1i)	1.395(10)		
C(21)-C122)	1.401(10)		
C(22) (123)	1.363(11)		
(123) (124)	1.358(10)		
C(24)-(125)	$1.362(10)$		
(125) (2)	1.373611)		

TABLE 4
BOND DISTANCES AND BOND ANGLES OF 1-3 AND RELATED COMPOUNDS "

	Ti-CO	Ti-P	Ti-Z	$\mathrm{Ti}-\mathrm{Cl}$	Z-Ti-Z	L-Ti-L	Ref.
$\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CO})_{2}(\mathbf{1})$	2.030(11)	-	2.03		138.6	87.9(6)	11
			2.02				
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})(3)$	1.963(5)	2.544(1)	2.04		136.9	88.2(1)	h
			2.04				
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PEt}_{3}\right)(\mathrm{CO})$	2.009(4)	2.585(1)	2.05		138.7	90.3(1)	10
			2.06				
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)_{2}(\mathbf{2})$	-	2.524(4)	2.05		133.2	$91.5(2)$	3
		2.527(3)	2.06		134.3	92.9(1)	
		2.527(3)	2.06				
$\mathrm{Cp}_{2}{ }^{\text {I }} \mathrm{Ti}(\mathrm{DMPE})$	-	2.527(4)			135.2(2)	76.9(2)	9
		2.540(4)					
$\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PF}_{3}\right)_{2}$	-	$\begin{aligned} & 2.340(6) \\ & 2.349(6) \end{aligned}$	2.01		137.1	87.3(1)	10
			2.02		138.0	88.1(2)	
$\mathrm{Cp}_{2} \mathrm{TiCl}_{2}(8)$	-	-	2.060	2.367(2)	130.89(5)	94.43(6)	19
			2.056	2.361(1)			
$\mathrm{Cp}_{2} \mathrm{TiCl}\left(\mathrm{PMe}_{3}\right){ }^{(7)}$	-	2.599(2)	$2.071(7)$	2.482(2)	132.3(3)	80.4(1)	b
			2.064(7)				

${ }^{a}$ Abbreviations: $\mathrm{Cp}=\eta^{5}$-cyclopentadienyl $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) ; \mathrm{CP}^{\prime}=\eta^{5}$-methylcyclopentadienyl $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{3}\right), \mathrm{Me}=$ methyl $\left(\mathrm{CH}_{3}\right) . \mathrm{Et}=$ ethyl $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right), \quad$ DMPE $=1,2$-bis(dimethylphosphino) ethane $\left(\mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PMe}_{2}\right)$. Z - center of the C_{5} ring (Cp or Cp^{\prime}); $\mathrm{L}=$ ligand other than Cp or Cp^{\prime}. ${ }^{\text {b }}$ This work.
tions. An atom at (x, y, z) in $\mathbf{3}$ has a counter atom at approximately $(x, 1 / 2-y, z)$ in 7 .

In Table 4 the essential structural parameters of a series of Cp_{2} Ti-type complexes possessing phosphine ligands are tabulated together with those for the related complexes $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CO})_{2}$ (1) and $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ (8). Comparison of the data indicates that the distance between the metal and the two Cp rings is insensitive to ligand substitution; the $\mathrm{Ti}-\mathrm{Z}$ values range from 2.01 to $2.07 \AA$, the complexes with strong acceptor ligands $\left(\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PF}_{3}\right)_{2}\right.$ and $\left.\mathrm{C}_{2} \mathrm{Ti}(\mathrm{CO})_{2}\right)$ having the shortest $\mathrm{Ti}-Z$ distances. The $\mathrm{Z}-\mathrm{Ti}-\mathrm{Z}$ angles also vary within narrow limits (130-139). Hoffmann et al. [8] have predicted that an increase in the π-acceptor character of L should be accompanied by a decrease in the $\mathrm{Z}-\mathrm{Ti}-\mathrm{Z}$ angle. In this series, however, this angle decreases as the π-acceptor CO ligands of $\mathbf{1}$ are replaced by PMe_{3}, a poor acceptor, to form $\mathbf{3}$, and decrease again in $\mathbf{2}$. This is probably due to the steric requirements of PMe_{3}, which are more important than the expected effects of decreased back-bonding. The structural parameters of the $\mathrm{Cp}_{2} \mathrm{Ti}$ unit of the mixed complex $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})(3)$ fall exactly between those of $\mathrm{Cp}_{2} \mathrm{Ti}(\mathrm{CO})_{2}$ (1) and $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)_{2}$ (2).

The $\mathrm{Ti}-\mathrm{P}$ distances of all complexes containing trialkylphosphine ligands range from 2.52 to $2.60 \AA$; the corresponding values of the chelating complex $\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Ti}(\mathrm{dmpe})(2.527(4)$ and $2.540(4) \AA$) are in good agreement [9]. In contrast, the $\mathrm{Ti}-\mathrm{P}$ distances of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PF}_{3}\right)_{2}$ (2.340(6) and 2.349(6) \AA) are much smaller [10], the shortening being due to increased $\mathrm{Ti}-\mathrm{P}$ back-bonding. Atwood et al. [10] have suggested that the $\mathrm{Ti}-\mathrm{P}$ bond in $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PEt}_{3}\right)(\mathrm{CO})$ is elongated because of steric crowding. This is supported by a comparison with the $\mathrm{Ti}-\mathrm{P}$ distance in $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})(3)$ which is $0.04 \AA$ shorter.

The $\mathrm{Ti}-\mathrm{C}$ (carbonyl) distance of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{PMc}_{3}\right)(\mathrm{CO})(3)(1.963(5) \AA$) is shorter than
the corresponding distance in (pTif(O), (1) OO30(11) A; $111 \mid$ prewmabis because of enhanced $\mathrm{Ti} \rightarrow$ CO back-bonding. This result is consintent with the JR data discussed above.

The $1 \quad \mathrm{Ti}$ Langles ($\mathrm{L}=\mathbb{C}$) or phosphine) again fall whin a narrow fange from $87.91092 .9^{\circ}$. The DMPL complex possesses an exceptionally smat P it P angle $(76.92)^{\circ}$) as a result of the geometry of the chelating ligand In the af complex CpTict, (8), the L-7 L angle is larger $94.43(6)^{\prime}$) than that of the d' complex
 ions that as the number of a electronsincreases, the L. Th L angle dereasests: The L-Ti L angles of the d^{2} complexes (87.3(1) $\left.92.9(1)^{\circ}\right)$ are acwally larem than those in the d^{\prime} complex (p-TicliPMe) (7). presumathy for sterie reason but are nevertheless smaller than that (p.TiCl, (8).

Experimental

Preparations

All operations were performed under argon. Pentane and THF were dried wer Na/K allos and freshly distilled. The complexes CpTif(O), (1) [12]. Cp, 7rico),

 respectively
(P, Til PMe J(O) (3)
A solution of 800 m pentanc containing $5.00 \mathrm{~g}(21.4 \mathrm{mmol})(\mathrm{P}, \Gamma(\mathrm{CO}) \geq(1)$ and $50 \mathrm{ml}(53 \mathrm{mmol})$ PMe, was imadiated in a falling-film photo-feator (Hanora 450 W) at - $20^{\circ}($. When gats evolution ceased and only the single (CO absorption of 3 ($1864 \mathrm{~cm}^{i}$) remaned in the 1 R spectrum of the solution. the solvent was removed in bacuo to recover unteacted PMe: The residue was extracted with too mi pentane and the solution was filtered through filter-aid. concentrated to 100 ml . and cooled 10 -78°. Complex 3 formed as dark-brown erystals which were dried in sucuo.
 113 (CpTi $.37 \%$) 76 (PMe:. 45%

($\mathrm{P}, \mathrm{ZnP} \mathrm{PMe}$: $\mathrm{HCO}(4)$

A solution of 300 ml pentane contatning $2.77 \mathrm{~g}(10.0 \mathrm{mmol})$ ($\mathrm{P}, Z \mathrm{Zr}(O)$, and 30 mi (32 mmol) PMe; was stired at room temperature and illuminated with room lighting. (The reaction does not proced in the dark.) When anty the shole : (0) absorption of 4 rematned in the solution $1 R$ spectrum (36 h) the sotemt as removed. The residue was redissolved in 250 ml pentane and the solution was filtered. concentrated to 50 ml , and cooled to $-78^{\circ} \mathrm{C}$. Complex 4 was wolated as

Cp, HffPMc: (CO) (5)
A solution of 20 ml pentane containing $220 \mathrm{mg}(0.6 \mathrm{mmol})(\mathrm{P}, \mathrm{Hf(CO}$, and 0,3 $\mathrm{ml}(3 \mathrm{mmol}) \mathrm{PMe}_{3}$ was irradiated at room temperatore (Hanovia L . 450 W) for 35 min. The orange solution was filtered and removal of the solvent in tacuo fof a crystalline orange solid.

Yield $200 \mathrm{mg}(81 \%)$. Mass spectrum: $m / e 414\left(M^{+} .9 \%\right) .386\left(M^{+}-C O .56 \%\right)$. 76 ($\mathrm{PMe}_{3}, 5 \%$).
$\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{2} \operatorname{Ti}\left(\mathrm{PMe}_{3}\right)(\mathrm{CO})(6)$
A 500 ml Schlenk flask was charged with $1.00 \mathrm{~g}(2.86 \mathrm{mmol})\left(\mathrm{C}_{4} \mathrm{H}_{7}\right) \mathrm{TiCl}_{2}$ [13] and 350 mg (14 mmol) magnesium turnings. THF (50 ml) was added, and the mixture stirred vigorously under a slight CO pressure for 20 h . The solution was then passed through a $3 \times 2 \mathrm{~cm}$ plug of 10% deactivated alumina and the product was eluted with THF. The solvent was removed in vacuo and the residue was extracted with 200 ml pentane. The extract solution was passed through another $2 \times 3 \mathrm{~cm}$ plug of 10% deactivated alumina, $2 \mathrm{ml}(21 \mathrm{mmol}) \mathrm{PMe}_{3}$ was added. and the solution was irradiated at $-10^{\circ} \mathrm{C}$ for 2 h . The brown/maroon solution was filtered, and black needles formed as the solvent was removed in vacuo. Yield 590 mg (54%). Mass spectrum: $m / e 306\left(M^{+}-\mathrm{PMe}_{3}, 3 \%\right), 278$ ($\operatorname{Ind}_{2} \mathrm{Ti}^{\circ}, 95 \%$), 163 (IndTi, 20%), 115 (Ind ${ }^{+}, 100 \%$), 76 ($\mathrm{PMe}_{3}, 39 \%$), 61 $\mathrm{PMe}_{2}{ }^{+}, 51 \%$).
$\mathrm{Cp}, \mathrm{TiCl}\left(\mathrm{PMe}_{3}\right)$ (7)
A mixture of $1.00 \mathrm{~g}(4.02 \mathrm{mmol}) \mathrm{Cp}_{2} \mathrm{TiCl}_{2}, 430 \mathrm{mg}(17.7 \mathrm{mmol})$ magnesium turnings, $22 \mathrm{mg}(0.08 \mathrm{mmol}) \mathrm{HgCl}_{2}$ and $1.5 \mathrm{ml}(16 \mathrm{mmol}) \mathrm{PMe}_{3}$ in 20 ml THF was stirred at room temperature until the solution became blue. The solvent was removed in vacuo and the residue extracted with toluene. After filtration and concentration in vacuo the solution was cooled to $-20^{\circ} \mathrm{C}$ to give complex 8 as blue-green crystals. Yield $950 \mathrm{mg}(82 \%)$. Mass spectrum: $m / e 213\left(M^{+}-\mathrm{PMe}_{3}, 93 \%\right), 178\left(\mathrm{Cp}_{2} \mathrm{Ti}^{+}\right.$, $19 \%), 148\left(\mathrm{CpTiCl}^{+}, 100 \%\right), 77\left(\mathrm{PMe}_{3} \mathrm{H}^{+}, 5 \%\right), 65\left(\mathrm{Cp}^{+}, 3 \%\right)$.

Spectroscopic measurements

The following instruments were used: IR: Perkin Elmer 297; NMR: JEOL FX 90 Q; Mass: Varian CH 7 (electron impact, 70 eV).

TABLE 5
ATOMIC COORDINATES FOR $\mathrm{Cp}_{2} \operatorname{Ti}(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)$ (3)

Atom	x	l	z	U_{cq}
Ti	$0.17122(0)$	$0.39998(0)$	$0.31962(1)$	$0.044(1)$
P	$0.0718(1)$	$0.2669(1)$	$0.3335(1)$	$0.053(1)$
$\mathrm{C}(111)$	$0.1138(5)$	$0.1680(4)$	$0.4003(8)$	$0.101(11)$
$\mathrm{C}(112)$	$-0.0256(4)$	$0.2827(6)$	$0.4103(6)$	$0.079(8)$
$\mathrm{C}(113)$	$0.0268(6)$	$0.2205(7)$	$0.2108(7)$	$0.103(11)$
$\mathrm{C}(1)$	$0.1777(3)$	$0.4008(3)$	$0.4768(4)$	$0.069(6)$
O	$0.1839(3)$	$0.4043(3)$	$0.5713(3)$	$0.115(6)$
$\mathrm{C}(11)$	$0.0511(3)$	$0.4863(4)$	$0.3549(5)$	$0.069(7)$
$\mathrm{C}(12)$	$0.0418(3)$	$0.4572(4)$	$0.2509(5)$	$0.063(7)$
$\mathrm{C}(13)$	$0.1058(4)$	$0.4936(4)$	$0.1898(5)$	$0.077(8)$
$\mathrm{C}(14)$	$0.1550(4)$	$0.5462(4)$	$0.2559(7)$	$0.078(8)$
$\mathrm{C}(15)$	$0.1234(4)$	$0.5435(4)$	$0.3588(6)$	$0.080(8)$
$\mathrm{C}(21)$	$0.2830(4)$	$0.2987(4)$	$0.3426(8)$	$0.091(10)$
$\mathrm{C}(22)$	$0.3178(3)$	$0.3856(5)$	$0.3487(7)$	$0.090(10)$
$\mathrm{C}(23)$	$0.3090(3)$	$0.4243(5)$	$0.2497(7)$	$0.082(9)$
$\mathrm{C}(24)$	$0.2699(4)$	$0.3632(5)$	$0.1822(6)$	$0.089(9)$
$\mathrm{C}(25)$	$0.2541(4)$	$0.2868(5)$	$0.2392(8)$	$0.092(10)$

X Ray structure of $C_{2}, T i\left(P M e_{3}\right)(C O)(3)$
The data were collected at $20^{\circ} \mathrm{C}$ on a Philips PW-1100 diffractometer with graphite crystal monochromated Mo-K radiation ($\lambda 0.71069$ A). The crvstal fragment had the dimensions: $0.3 \times 0.3 \times 0.5 \mathrm{~mm}$ and was sealed in a Lindemam glass capillary.

Constal data. Orthorhomic. space group Pbca, a 15.733(2). b 15.0222 2, c 12.475 (2) A. $\mathrm{Z}=8: D$ (calc.) $1.271 \mathrm{~g} \mathrm{~cm}^{-*}$.

Imensity data. $\theta / 2 \theta$ scans, θ (max) 25° : Lp correction: no absorption correction $\left(\mu 6.2 \mathrm{~cm}^{1}\right), 2370$ independent reflections: for the following calculations the 1820 reflections with $F_{0}>\sigma\left(\Gamma_{0}\right)$ were used.

The structure was detemined by the Patherson method. All H atoms could be located in $\lrcorner F$ syntheses. Their parameters were atso refined. Final R indices: $R=0.064, R_{u}(F)=0.048, w^{2}=\sigma^{2}(F)+0.001 F^{2}$. The maximum of residuat electron density was $0.42 \mathrm{eA}:$ Atomic coordinates are listed in Table 5 [14]. Form factor values for neutral atoms were used [15,16]. Anomalous dispersion terms were from [17]. Program system used: SHELX-76 [18].

X Res structure of $(p, T i C H P M e)(7)$

A crystal of dimensions $0.2 \times 0.2 \times 0.4 \mathrm{~mm}$ was sealed in a glass capillary. Data collection was as for 3.

Crstal data. Orthorhombic, space group Phoca, a $15.755(a)$. b 14.950(4) 12.217(3) A, $Z=8 ; D$ (calc.) 1.337 g cm

Intensity data and corrections as for 3. no absorption correction applied ($\mu 8.0$ (m) '), 2535 independent reflections: for the following calculations the 1962 reflections with $\left|F_{0}\right|>30\left(F_{0}\right)$ were used.

The structure was determined by the Patterson method. H atoms were located in ΔF maps. Their contributions to the F_{s} 's were taken into account but their parameters were not refined. Final R indices: $\left.R=0.066 . R_{w}, F\right)=0.061$. w $=$

TABLE 6 ,
ATOMIC COORDINATES FOR CP2TiCl(PME:) (7)

Atom	-	b	-	C_{4}
T	$0.1753(1)$	$0.091041)$	0.3235011	0.03501
(1)	(1) $1689(1)$	$0.0990(1)$	0.5201011	0.07211
P	$0.0708(1)$	$0.2244(1)$	0.3455011	0.04111
C(111)	-0.0250(3)	$0.2025(3)$	$0.4268(4)$	1105996)
((112)	(j)124 (4) $^{(1)}$	$0.2721(4)$	$0.2219(4)$	(1.083(8)
C(113)	$0.1125(4)$	$0.3239(3)$	$0.4150(5)$	008.4
C(11)	0.3223033	10. $1128(5)$	0.352216	U08]
(112)	0.315341	0.1692(4)	$0.2499(8)$	0.050%
C(13)	$0.2733(4)$	$0.1257(6)$	0.182108	0.0826
C(14)	$0.2567(4)$	$0.2047(5)$	0.2337(7)	0198008
C(15)	$0.2862(4)$	$0.1974(4)$	0.3400479	011829
(121)	$0.131 .4(5)$	$-0.0577(3)$	0.342043	0, $\mathrm{S}^{\text {a }}$
(122)	$0.0579(4)$	$-0.0050(4)$	$0.3457(6)$	00720
(123)	0.048363	$0.0330(4)$	0.245066	
(124)	$0.1124(5)$	$0.0039(4)$	0.17994	008008
C(25)	$0.1643(4)$	--0.0512731	0.23836	0.6789

$\sigma^{2}(F)+0.00006 F^{2}$. The maximum of residual electron density was $0.42 \mathrm{e}^{\AA} \mathrm{A}^{-3}$. Atomic coordinates are listed in Table 6. Other details were as for 3.

Additional data for both structure determinations can be obtained from the Fachinformationszentrum Energie Physik Mathematik, D-7514 EggensteinLeopoldshafen 2, by quoting the depository number CSD 51444, the names of the authors and the journal citation.

Acknowledgements

The authors are grateful to the National Science Foundation (M.D.R. and L.B.K.), to the NATO (H.G.A. and M.D.R.), to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie (H.G.A., M.H., U.T. and B.W.). A gift of trimethylphosphonium chloride from Knapsack/Hoechst AG is gratefully acknowledged.

References

1 J.G. Murray, J. Am. Chem. Soc., 81 (1959) 752; 83 (1961) 1287.
2 (a) G.P. Pez, J.N. Armor, Adv. Organomet. Chem., 19 (1981) 1; (b) M. Bottril, P.D. Gavens and T. McMeeking in G. Wilkinson, F.G.A. Stone and E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Vol. 3, Pergamon Press, Oxford, 1982, p. 285; (c) D.J. Sikora, D.W. Macomber and M.D. Rausch, Adv. Organomet. Chem., 25 (1985) in press.
3 L.B. Kool, M.D. Rausch, H.G. Alt, M. Herberhold, U. Thewalt and B. Wolf, Angew. Chem., 97 (1985) 425; Angew. Chem., Int. Ed. Engl., 24 (1985) 394.

4 H.G. Alt, H.E. Engelhardt, M.D. Rausch and L.B. Kool, J. Am. Chem. Soc., 107 (1985) 3717.
5 B. Demerseman, G. Bouquet and M. Bigorgne, J. Organomet. Chem., 93 (1975) 199; 132 (1977) 223.
6 M.L.H. Green and C.R. Lucas, J. Chem. Soc. Dalton, (1972) 1000.
7 D.J. Sikora, K.J. Moriaty and M.D. Rausch, Inorg. Synth., in press.
8 J.W. Lauher and R. Hoffmann, J. Am. Chem. Soc., 98 (1976) 1729.
9 G.S. Girolami, G. Wilkinson, R.G.M. Thornton-Pett and M.B. Hursthouse, J. Chem. Soc. Dalton Trans., (1984) 2347.
10 B.H. Edwards, R.D. Rogers, D.J. Sikora, J.L. Atwood and M.D. Rausch. J. Am. Chem. Soc., 105 (1983) 416.

11 J.L. Atwood, K.E. Stone, H.G. Alt, D.C. Hrncir and M.D. Rausch, J. Organomet. Chem., 132 (1977) 367.

12 B. Demerseman, G. Bouquet and M. Bigorgne. J. Organomet. Chem.. 101 (1975) C24.
$13\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{2} \mathrm{TiCl}_{2}$ was obtained from Strem Chemicals, Inc.
14 The parameters of the H atoms, the anisotropic temperature parameters of the remaining atoms as well as the lists of the F_{0} / F_{c} values are deposited at the Fachinformationszentrum Energie Physik Mathematik, D- 7514 Eggenstein-Leopoldshafen 2, under the number CSD 51444.
15 D.T. Cromer and J.B. Mann, Acta Cryst. A, 24 (1968) 321.
16 R.F. Stewart, E.R. Davidson and W.T. Simpson, J. Chem. Phys., 42 (1965) 3175.
17 D.T. Cromer and D. Liberman, J. Chem. Phys.. 53 (1972) 1891.
18 G.M. Sheldrick, Göttingen, unpublished.
19 A. Clearfield. D.K. Warner. C.H. Saldarriaga-Molina. R. Ropal and I. Bernal. Can. J. Chem.. 53 (1975) 1622.

[^0]: * U.S. Senior Scientist Awardee of the Alexander-von-Humboldt-Stiftung, Universitat Bayreuth, 1984-85.

